20
Январь
Комментарии к записи Рисунок квадрата, описанного вокруг окружности в перспективе отключены

Рисунок квадрата, описанного вокруг окружности в перспективе

Окружность и – две базовые геометрические фигуры, к которым у людей всегда было особенное отношение, поскольку они восходят к очень древним архетипам сознания. С кругом и квадратом наши предки связывали свои представления о мироустройстве ( – четыре стороны света, круг – небесный свод). Окружность и – центрические фигуры. Следовательно, окружность вписывается в (либо, наоборот, описывается вокруг окружности), если диаметр окружности равен стороне квадрата. Эта общеизвестная особенность важна при построении квадрата и окружности .


Научимся рисовать правильный квадрат в перспективе, описывая его вокруг окружности.

Изобразите несколько горизонтальных и вертикальных окружностей в перспективе (эллипсов), опишите вокруг эллипсов квадраты в угловой и фронтальной перспективах.

Горизонтальная окружность. Нарисуйте окружность, лежащую на горизонтальной плоскости. Вы уже знаете, что на перспективном рисунке такая окружность изображается как , оси которого – горизонтальная и вертикальная прямые.

Рисунок квадрата, описанного вокруг окружности в перспективе

квадрата, описанного вокруг окружности в перспективе

В угловой перспективе стороны горизонтального квадрата имеют две точки схода. Сначала задайте одно из направлений, соответствующее любым двум параллельным сторонам квадрата, а затем найдите второе, ему перпендикулярное. Для этого проведите прямую произвольного направления (среднюю линию квадрата) через центр окружности (рис. 2.18). Полученные на пересечении этой прямой с эллипсом точки 1 и 3 являются точками касания сторон квадрата к окружности. Проведите касательные через эти точки. Обратите внимание, что на рисунке полученные прямые (две стороны квадрата) сходятся в перспективе. Теперь проведите вторую среднюю линию квадрата, параллельную уже нарисованным сторонам (рис. 2.19). Она пройдет через центр окружности и даст нам на пересечении с эллипсом еще пару точек – 2 и 4. Эти точки также являются точками касания сторон квадрата к окружности. Проведите прямые, касательные к эллипсу в этих точках. Эти касательные параллельны прямой 7 – 3, т. е. уходят вместе с ней в одну точку схода на горизонте (рис. 2.20). Внимательно проверьте рисунок. В полученном квадрате прямые 1 – 3 и 2 – 4 параллельны соответствующим сторонам квадрата, а точки 1, 2, 3, 4 делят его стороны пополам. Проведите диагонали квадрата – они должны пересекаться в центре окружности.

Во фронтальной перспективе квадрат имеет две горизонтальные стороны и две стороны, сходящиеся в точке схода на линии горизонта. Построение такого квадрата ведется по той же схеме, что и построение квадрата в угловой перспективе. Средняя линия 1 – 3 совпадает с малой осью эллипса. Изобразите горизонтальные стороны квадрата как касательные к эллипсу в точках 1 и 3 (рис. 2.21). Проведите горизонтальную среднюю линию через центр окружности (рис. 2.22). Касательные к эллипсу в точках 2 и 4 определяют положение двух других сторон квадрата. Полученная таким образом фигура, ограниченная четырьмя касательными и есть описанный вокруг эллипса квадрат (рис. 2.23). Проверьте правильность построения квадрата при помощи диагоналей.

Рисунок квадрата, описанного вокруг окружности в перспективе

Рисунок квадрата, описанного вокруг окружности в перспективе

Вертикальный квадрат. Последовательность построения вертикального квадрата, описанного вокруг окружности, рассмотрим на примере, когда перед рисующим ставится задача описать вокруг горизонтального цилиндра четырехгранную призму, лежащую на горизонтальной плоскости. При таком положении цилиндра окружности его оснований будут вертикальными.

Начните построение с ближнего к вам основания. Описанный вокруг него квадрат имеет две вертикальные стороны, которые остаются вертикальными и на перспективном рисунке. Проведите две вертикальные касательные к эллипсу и найдите точки 2 и 4. Прямая, соединяющая их, будет иметь горизонтальное направление (рис. 2.24). Теперь проведите вертикальную прямую через центр окружности (точку, смещенную относительно центра эллипса дальше от зрителя) и найдите точки 1 и

3 (рис. 2.25). Прямые, касательные к эллипсу в этих точках, параллельны прямой 4 – 2, уходят с ней в одну точку схода на горизонте и определяют положение двух горизонтальных сторон квадрата (рис. 2.26). Второе основание призмы можно получить путем аналогичных построений. Соединив соответствующие вершины ближнего и дальнего оснований, завершите рисунок призмы, описанной вокруг цилиндра (рис. 2.27). Проверить правильность рисунка можно, проследив параллельность длинных сторон боковых граней призмы: они должны уходить в одну точку схода с осью цилиндра и его образующими.

Для закрепления этого материала подобные построения рекомендуется проделать несколько раз. Свободное владение этими навыками позволит вам перейти к перспективному изображению куба и других геометрических тел.




Обсуждение закрыто.

Итак, мы приступаем к освоению 3ds max – одной из лучших и наиболее популярных программ для моделирования трехмерной компьютерной графики или, как ее еще называют, ЗD-графики (от слов «3 Dimensional» — трехмерная). Чем же так привлекательна трехмерная графика, что заставляет множество компаний во всем мире выпускать все новые, более совершенные версии программ для ее моделирования, а множество пользователей — стремиться к их освоению, подобно вам, уважаемый читатель? В первой главе мы постараемся найти ответ на этот вопрос, а также получить те начальные сведения о ЗD-графике, которые послужат более эффективному изучению и практическому усвоению материала последующих глав. Возможно, при этом вам потребуется вспомнить некоторые сведения из школьного курса черчения.
В архитектуре следует создать некие правила и требования, которые бы учитывали постоянно увеличивающееся население.
Чтобы успешно решить эту задачу, архитекторы не должны больше соотносить себя лишь со зданиями как с отдельными единицами. Они должны при работе иметь в виду целые поселения, в общем. Архитекторы должны выстраивать среду обитания, которая отвечала бы запросам общества и была бы достаточно рациональной. Роль этих специалистов не должна сводиться лишь к созданию концепта.