16
Январь
Комментарии к записи Врезка куба и четырехгранной призмы. Основной принцип построения врезок отключены

Врезка куба и четырехгранной призмы. Основной принцип построения врезок

Как получить начальные навыки в рисунке врезок геометрических тел. Понять основной принцип построения врезок на примере связки двух кубов. Научиться строить врезку куба и четырехгранной призмы. Оценить многообразие возможных связок куба и четырехгранника, отработать приемы построения их врезок, научиться создавать на листе связки с гармоничными пропорциями.


Нарисуйте связки куба и четырехгранной призмы сначала по заданным ортогональным проекциям, а затем в произвольном положении по отношению друг к другу. Найдите наиболее красивые, связок, изменяя положение линии пересечения геометрических тел.

Врезки геометрических тел с плоскими гранями, таких как кубы и четырехгранные призмы, самые простые из огромного разнообразия всех возможных врезок геометрических тел. Именно на примере таких врезок проще всего понять основной принцип их построения. Сначала рассмотрим построение линии пересечения двух кубов. Положение кубов в пространстве по отношению друг к другу задано в

Такими иррациональными отношениями являются:

1) отношение диагонали квадрата к его стороне;

2) отношение высоты равностороннего треугольника к половине его основания;

3) отношение золотого сечения, выражаемое дробным числом 1:1,618…».

Есть и другое правило, которым вы легко можете пользоваться на первых порах при создании врезок. Выбирая линию врезки одного геометрического тела в другое, ориентируйтесь на линии и членения, заложенные в самих телах, в данном случае речь идет о высотах и осях симметрии, т. е. о тех элементах геометрических тел, которые составляют и определяют их структуру. Как правило, врезки, сделанные по этим линиям, естественны и гармоничны.

Ортогональных проекциях – плане и фасаде на рис. 5.1. Заметьте, что ребра обоих кубов параллельны или перпендикулярны друг другу, иными словами, кубы находятся в некой пространственной сетке, состоящей из прямых линий, идущих в трех взаимно перпендикулярных направлениях. Представьте взаимное расположение кубов и их положение относительно зрителя, линию горизонта задайте самостоятельно (в нашем примере она проходит выше кубов). Стрелка на плане показывает направление луча зрения, определяющего поворот геометрического тела по отношению к зрителю, – ближнее к нам вертикальное ребро куба совпадает на рисунке с центром дальней от нас грани.

Изобразите кубы . Для этого сначала нарисуйте один (рис. 5.2). Если вам трудно сразу определить, какое место на рисунке займет второй , найдите место любой грани, ребра или точки второго куба относительно первого куба. В нашем примере одно из вертикальных ребер второго куба совпадает с вертикальной осью первого куба. Точка 1, лежащая в центре верхней грани первого куба, делит это вертикальное ребро пополам. Найдите размер этого ребра и нарисуйте любую грань, которая ограничена этим ребром – например, грань а (рис. 5.3). На основании этой грани нарисуйте второй (рис. 5.4).

Врезка куба и четырехгранной призмы

Врезка куба и четырехгранной призмы

Теперь постройте линию врезки этих кубов. Проведите из точки 1 прямую линию, являющуюся пересечением двух граней (а и Ь). Эта прямая будет параллельна горизонтальным ребрам, ограничивающим пересекающиеся грани а и б. Продолжите прямую до точки 2, где одна из двух пересекающихся граней заканчивается (рис. 5.5). В этой точке линия врезки кубов меняет свое направление. Далее необходимо рассматривать пересечение продолжающейся грани а с гранью с и строить линию их пересечения до точки 3, где грань а заканчивается (рис. 5.6). Построенные подобным образом линии объединятся в замкнутую ломаную 1 – 2 – 3 – 4 – 5 – 6, которая и будет линией врезки двух кубов (рис. 5.7). Запомните основной принцип, знание которого поможет вам в создании врезок любой сложности: построение любой врезки можно рассматривать как последовательное построение пересечений пар поверхностей. Теперь сделайте объем двух пересекающихся кубов более понятным для восприятия при помощи легкого тона, так как это сделано на рис. 5.8.

Рассмотрите двух геометрических тел – куба и четырехгранной призмы – на рис. 5.9. Представьте взаимное положение тел.

Врезка куба и четырехгранной призмы

Врезка куба и четырехгранной призмы

Изобразите в перспективе заданную связку геометрических тел с различным положением относительно линии горизонта (выше линии горизонта на рис. 5.10 и ниже линии горизонта на рис. 5.11).

При усложнении задачи, когда необходимо пересечь три тела и более, сначала изобразите связку двух тел, построив линию их пересечения. Представьте эту связку как монолит, иначе говоря – одно геометрическое тело сложной структуры. Теперь постройте линию врезки этого нового сложного тела со следующим геометрическим телом. Так, на рис. 5.12 и 5.13 показаны стадии построения врезки трех тел – двух кубов и четырехгранной призмы. Тонируйте полученные связки трех геометрических тел так, как это показано на рис. 5.14 и 5.15.

Создавая свои первые связки, ориентируйтесь на те гармоничные отношения, о которых говорилось в самом начале этой части пособия. Упражняясь далее, вы постепенно научитесь чувствовать эти гармоничные отношения и создавать красивые связки геометрических тел, руководствуясь не измерениями, а собственными ощущениями. На достижение этой цели направлены задания, в которых вы можете изменять линию врезки двух и более геометрических тел, не меняя их положения на листе. Рассмотрите простой пример изменения линии врезки двух геометрических тел (куба и четырехгранной призмы), изображенных на рис. 5.16. Рассмотрите последовательно рис. 5.17; 5.18 и 5.19. На всех этих рисунках общий абрис геометрических тел сохраняется, мы лишь изменяем линию их пересечения, меняя таким образом положение тел в пространстве по отношению друг к другу и пропорции врезки. Если предположить, что неподвижна, то куб на каждом следующем рисунке перемещается ближе к зрителю. Следует отметить, что пользоваться этим приемом можно лишь в том случае, когда перспективные сокращения незначительны. Тогда мы можем пренебречь небольшим изменением в размерах геометрических тел при перемещении их в пространстве относительно друг друга.

Врезка куба и четырехгранной призмы

Врезка куба и четырехгранной призмы

Врезка куба и четырехгранной призмы

Врезка куба и четырехгранной призмы

Врезка куба и четырехгранной призмы

Врезка куба и четырехгранной призмы




Обсуждение закрыто.

Итак, мы приступаем к освоению 3ds max – одной из лучших и наиболее популярных программ для моделирования трехмерной компьютерной графики или, как ее еще называют, ЗD-графики (от слов «3 Dimensional» — трехмерная). Чем же так привлекательна трехмерная графика, что заставляет множество компаний во всем мире выпускать все новые, более совершенные версии программ для ее моделирования, а множество пользователей — стремиться к их освоению, подобно вам, уважаемый читатель? В первой главе мы постараемся найти ответ на этот вопрос, а также получить те начальные сведения о ЗD-графике, которые послужат более эффективному изучению и практическому усвоению материала последующих глав. Возможно, при этом вам потребуется вспомнить некоторые сведения из школьного курса черчения.
В архитектуре следует создать некие правила и требования, которые бы учитывали постоянно увеличивающееся население.
Чтобы успешно решить эту задачу, архитекторы не должны больше соотносить себя лишь со зданиями как с отдельными единицами. Они должны при работе иметь в виду целые поселения, в общем. Архитекторы должны выстраивать среду обитания, которая отвечала бы запросам общества и была бы достаточно рациональной. Роль этих специалистов не должна сводиться лишь к созданию концепта.