Существуют четыре варианта пересечения поверхностей.
Проницание
Все образующие первой поверхности пересекаются со второй поверхностью, но не все образующие второй поверхности пересекаются с первой. В этом случае линия пересечения поверхностей распадается на две замкнутые кривые линии (рис. 10).

Врезание
Не все образующие той и другой поверхности пересекаются между собой. В этом случае линия пересечения — одна замкнутая кривая линия (рис. 11).

Касание
Все образующие одной поверхности пересекаются со второй, но не все образующие второй поверхности пересекаются с первой. Поверхности имеют в одной точке (точка К на рис. 12) общую плоскость касания. Линия пересечения распадается на две замкнутые кривые линии, пересекающиеся в точке касания.

Двойное касание
Все образующие обеих поверхностей пересекаются между собой. В этом случае линия пересечения распадается на две плоские кривые, которые пересекаются в точках касания (рис. 13).

Теорема Монжа
Если две поверхности второго порядка описаны около третьей поверхности второго порядка или вписаны в нее, то линия их взаимного пересечения распадается на две плоские кривые. Плоскости этих кривых пройдут через прямую, соединяющую точки пересечения линий касания.
Если оси пересекающихся поверхностей вращения параллельны какой — либо плоскости проекций, то на эту плоскость кривые линии проецируются в прямые.
На рис. 14-15 два цилиндра описаны вокруг сферы, а на рис. 16 два сжатых эллипсоида вращения вписаны в сферу. Во всех этих случаях поверхности пересекаются по эллипсам.

Теорема о двойном касании
Если две поверхности второго порядка имеют две общие точки (точки касания), то линия их взаимного пересечения распадается на две плоские кривые второго порядка. Причем плоскости этих кривых пройдут через прямую, соединяющую точки касания.
На рис. 17 два цилиндра (цилиндр вращения и эллиптический цилиндр) пересекаются по двум плоским кривым (окружности и эллипсу).
