Параллельные плоскости.
Плоскости будут параллельными:
- если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости (рис. 6);
- если плоскости параллельны, то параллельны их одноименные следы (рис. 7).


Плоскости пересекаются
Для построения линии пересечения двух плоскостей необходимо
- или найти две точки, каждая из которых принадлежит обеим плоскостям;
- или найти одну точку, принадлежащей двум плоскостям, и направление линии пересечения.
В обоих случаях задача заключается в нахождении точек, общих для двух плоскостей.
Плоскости в пространстве могут занимать различное положение. рассмотрим три случая построения линии их пересечения.
- Линия пересечения двух проецирующих плоскостей
Если плоскости занимают частное положение, например, как на рис. 8, являются горизон- тально-проецирующими, то проекцией линии пересечения на плоскость проекций, которой данные плоскости перпендикулярны (в данном случае горизонтальной), будет точка. Фронтальная проекция линии пересечения перпендикулярна оси проекций.

- Линия пересечения плоскости общего положения и проецирующей плоскости
В этом случае одна проекция линии пересечения совпадает с проекцией проецирующей плоскости на той плоскости проекций, которой она перпендикулярна.
На рис. 9 показано построение проекций линии пересечения горизонтально-проецирующей плоскости, заданной следами, c плоскостью общего положения (треугольник ABC).
На горизонтальной проекции (рис. 9) в пересечении следа плоскости PН и сторон АС и ВС треугольника АВС находим горизонтальные проекции n и m линии пересечения. По линиям связи находим фронтальные проекции точек M и N линии пересечения.
При взгляде по стрелке на плоскость V по горизонтальной проекции видно, что часть треугольника правее линии пересечения МN (mn) находится перед плоскостью Р, то есть будет видимой на фронтальной плоскости проекций. Остальная часть — за плоскостью Р, то есть невидима.

Линия пересечения двух плоскостей общего положения
Построение линии пересечения двух плоскостей общего положения осуществляется с помощью дополнительных плоскостей- посредников.
Общий прием построения линии пересечения таких плоскостей заключается в следующем. Вводим вспомогательную плоскость (посредник) и строим линии пересечения вспомогательной плоскости с двумя заданными. В пересечении построенных линий находим общую точку двух плоскостей. Чтобы найти вторую общую точку, повторяем построение с помощью еще одной вспомогательной плоскости.
Соединяем полученные точки М и N и определяем взаимную видимость фигур.

Задача. Построить линию пересечения двух плоских фигур, заданных треугольниками с координатами вершин:
ΔABC — A(16,2,0), B(10,9,7), C(1,4,3)
ΔDEF — D (5,9,0), E (16,1,5), F (9,1,9)
На рис. 11 дано построение линии пересечения двух треугольников. Решение выполняем в следующей последовательности. Проводим две вспомогательные горизонтально-проецирующие плоскости — плоскость P через сторону ED и плоскость Q через сторону DF треугольника DEF. Плоскость P пересекает треугольник ABC по прямой 1-2.
В пересечении фронтальных проекций 1′-2′ и d’e‘ находим фронтальную проекцию точки M(m’) линии пересечения. Плоскость Q пересекает треугольник ABC по прямой 3-4. В пересечении фронтальных проекций 3′-4′ и b‘c‘ находим фронтальную проекцию точки N(п’) линии пересечения. Горизонтальные проекции этих точек, а следовательно, и линии пересечения, находим, проводя линии связи.
Соединяем точки M и N. Взаимную видимость треугольников на плоскостях проекций определяем с помощью конкурирующих точек.
