Врезки геометрических тел

Под врезкой геометрических тел подразумевается их сочленение, при котором тела пересекаются, и одно тело частично входит в другое. Пересечение тел происходит по так называемой линии врезки. Получившуюся фигуру или сочетание геометрических тел, которое в дальнейшем существует как одно сложное геометрическое тело, принято называть связкой.

Врезки геометрических тел
Условно все врезки можно разделить на простые и сложные. К простым врезкам относятся те, которые основаны на пересечении простых геометрических тел (куба, четырехгранника, шестигранника, пирамиды, цилиндра, конуса и шара) вертикальными и горизонтальными плоскостями (например, гранями куба или четырехгранной призмы). Сложные врезки основаны на пересечении тел вращения (конуса, цилиндра и шара), пирамиды и шестигранника наклонными плоскостями (например, наклонными гранями пирамиды и шестигранника).

Упражнения на построение врезок, безусловно, полезны для будущего архитектора. Они развивают объемно-пространственное воображение и учат видеть за сложными архитектурными формами сочетания простых геометрических тел. В дальнейшем полученные знания и практические навыки помогут вам, как архитектору, грамотно изображать и существующие, и воображаемые (проектируемые) архитектурные объекты.

Когда вы будете работать с иллюстрациями, показывающими примеры построения врезок, помните, что эти рисунки схематизированы, в них сохранены все вспомогательные линии. Сделано это специально, чтобы на каждом этапе работы у ученика оставалась возможность свериться с построением, разобраться во всех тонкостях этого сложного процесса. На последней стадии реального рисунка на листе остаются только те линии, которые наиболее важны для восприятия и понимания изображаемой конструкции, а большая часть вспомогательных линий уходит. Поэтому ближе к реальному рисунку те иллюстрации, которые даются в конце каждого упражнения — они представляют изображения уже готовых, тонированных связок. В них линии построения сохранены, но менее заметны за счет активного тона.

На первых порах тщательно простаивайте и разбирайте каждый этап создания врезки, не пренебрегая никакими дополнительными точками и линиями. Такое погружение в жесткий мир начертательной геометрии просто необходимо на начальных этапах рисунка, чтобы помочь вам не просто понять, но почувствовать линию врезки. В дальнейшем, по мере возрастания мастерства, по ходу становления профессионального объемно-пространственного мышления, вам будет нужно все меньше дополнительных построений для вашего рисунка. Тогда процесс изображения связок станет более быстрым, а ваш рисунок — более легким и живым. Но это уже будет не бесшабашная легкость от незнания, а свобода мастера, легко владеющего профессиональными навыками и оперирующего всем спектром специальных приемов.

Выполняя задания следующих разделов, особое внимание обратите не только на правильность выполнения врезок, но и на их пропорции. Красивые и гармоничные пропорции, как правило, выражаются определенными отношениями. В своей книге «Элементы архитектурно-пространственной композиции» В. Ф. Кринский, И. В. Ламцов и М. А. Туркус так писали об этом: «Известные в архитектурной практике закономерные или гармонические отношения можно разделить на две группы: простые, строящиеся на отношении простых чисел, и иррациональные, получаемые при помощи геометрического построения.

ПРОСТЫЕ ОТНОШЕНИЯ

Простыми отношениями называются такие от­ношения, в которых числовая зависимость двух ве­личин выражается дробным числом, где числитель
и знаменатель — целые числа в пределах от 1 до 6.
На отношении 1:1 строятся простейшие геомет­рические формы — квадрат и куб. Кратные отноше­ния 1:2; 1:3; 1:4; 1:5; 1:6 — дают в прямоугольной форме повторение квадрата целое число раз, квад­рат в этом случае является модулем (единицей из­мерения) прямоугольной формы.
В прямоугольниках с отношением сторон 2:3; 3:4; 2:5; 3:5; 4:5; 5:6 модулем является единица из­мерения, укладывающаяся целое число раз в каж­дой из сторон в пределах от 1 до 6.Таким образом, в простых отношениях мы име­ем простую числовую и ясно читаемую соизмери­мость пространственных величин, что и является одним из условий их гармоничной связи. Соизме­римость наиболее ясна зрительно в отношении 1:1.
По мере увеличения чисел, составляющих отноше­ние, последнее усложняется ( предел простых отно­шений — число 6 — можно определить как психофи­зиологический предел наиболее ясного восприятия числа зрительных раздражений).
Примерами простых отношений в своих изме­рениях могут служить квадрат, полтора квадрата, два с половиной квадрата, отношение сторон в еги­петском треугольнике (3:4:5).

ИРРАЦИОНАЛЬНЫЕ ОТНОШЕНИЯ

К иррациональным отношениям, встречающим­ся в архитектурной практике, относятся отношения, в основе построения которых лежит простая гео­метрическая закономерность.
Такими иррациональными отношениями явля­ются:
1) отношение диагонали квадрата к его стороне ( а : Ь = 1:<2);
2) отношение высоты равностороннего треу­гольника к половине его основания (а : b = 1: V3);
3) отношение золотого сечения, выражаемое дробным числом 1:1,618…».

Есть и другое правило, которым вы легко може­те пользоваться на первых порах при создании врезок. Выбирая линию врезки одного геометри­ческого тела в другое, ориентируйтесь на линии и членения, заложенные в самих телах, в данном слу­чае речь идет о высотах и осях симметрии, т.е. о тех элементах геометрических тел, которые со­ставляют и определяют их структуру. Как правило, врезки, сделанные по этим линиям, естественны и гармоничны.

Предыдущая статьяВинтовая лестница
Следующая статьяПерцептивная перспектива